Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.635
Filtrar
1.
Arch Biochem Biophys ; 752: 109886, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38215960

RESUMO

Recent studies have shown that some natural compounds from plants prevent obesity and related disorders, including the loss of skeletal muscle mass and strength. In this study, we investigated the effect of echinacoside (ECH), a caffeic acid glycoside from the phenylpropanoid class, on myogenesis and ATP-dependent thermogenesis in the skeletal muscle and its interaction with the dopaminergic receptors 1 and 5 (DRD1 and DRD5). We applied RT-PCR, immunoblot analysis, a staining method, and an assay kit to determine the effects of ECH on diverse target genes and proteins involved in skeletal muscle myogenesis and ATP-consuming futile processes. Our study demonstrated that ECH enhanced myogenic differentiation, glucose, and fatty acid uptake, as well as lipid catabolism, and induced ATP-dependent thermogenesis in vitro and in vivo. Moreover, ECH upregulated mitochondrial biogenesis proteins, mitochondrial oxidative phosphorylation (OXPHOS) complexes, and intracellular Ca2+ signaling as well as thermogenic proteins. These findings were further elucidated by mechanistic studies which showed that ECH mediates myogenesis via the DRD1/5 in C2C12 muscle cells. In addition, ECH stimulates α1-AR-mediated ATP-dependent thermogenesis via the DRD1/5/cAMP/SLN/SERCA1a pathway in C2C12 muscle cells. To the best of our knowledge, this is the first report that demonstrates the myogenic and thermogenic potential of ECH activity through the dopaminergic receptors. Understanding the novel functions of ECH in terms of its ability to prevent skeletal muscle loss and energy expenditure via ATP-consuming futile processes could help to develop potential alternative strategies to address muscle-related diseases, including combating obesity.


Assuntos
Músculo Esquelético , Obesidade , Humanos , Músculo Esquelético/metabolismo , Obesidade/metabolismo , Glicosídeos/farmacologia , Trifosfato de Adenosina/metabolismo , Desenvolvimento Muscular/fisiologia , Termogênese/fisiologia
2.
Sportis (A Coruña) ; 10(1): 158-187, 2024. tab, ilus
Artigo em Espanhol | IBECS | ID: ibc-229140

RESUMO

Con el pasar del tiempo y especialmente en los últimos años el entrenamiento de la fuerza en niños y adolescentes ha venido tomando fuerza, convirtiéndose en uno de los componentes más importantes en el desarrollo de las capacidades físicas y motrices. El objetivo es Identificar las tendencias más recientes en lo referente a la prescripción del entrenamiento de la fuerza en niños y adolescentes la metodología: se desarrollo una revisión sistemática en la que fueron analizados 648 artículos de los cuales sólo 10 fueron seleccionados dada su relevancia y relación con el tema, además dichos artículos fueron extraídos de las bases de datos: Google Académico, Redalyc, Dialnet, y Scielo. En los resultados se pudo identificar en la revisión, (N=11) investigaciones experimentales cuantitativas y (N=15) estudios de revisión (cualitativas), así como un total de (n=234) participantes de ambos sexos en las intervenciones experimentales y un total de (n=139) estudios consultados en los artículos de revisión sistemática. En las conclusiones se logró identificar que el entrenamiento con pesos libres, y peso corporal son la tendencia más usada a la hora de prescribir entrenamiento de la fuerza. Consigo, se destaca que son los métodos de entrenamiento con pesas y bandas elásticas los implementos más utilizados para llevar a cabo su realización. La frecuencia recomendada es de 2 a 3 días por semana. El volumen que se destaca es de 2 a 3 series y 6 a 15 repeticiones por ejercicio donde la intensidad que prevalece son los porcentajes del 60% al 85% por ciento de 1RM o una intensidad moderada en la escala del esfuerzo percibido (AU)


With the passing of time and especially in recent years, strength training in children and adolescents has been gaining strength, becoming one of the most important components in physical and motor development. The objective is to identify the most recent trends regarding the prescription of strength training in children and adolescents. The methodology: a systematic review was developed in which 648 articles were analyzed, of which only 10 were selected given their relevance and relationship. with the subject, in addition said articles were extracted from the databases: Google Scholar, Redalyc, Dialnet, and Scielo. In the results it was possible to identify in the review, (N=11) quantitative experimental investigations and (N=15) review studies (qualitative), as well as a total of (n=234) participants of both sexes in the experimental interruptions and a total of (n=139) studies consulted in the systematic review articles. In the conclusions it will be identified that training with free weights and body weight are the most used trend when prescribing strength training. With it, it stands out that the methods of training with weights and elastic bands are the most used implements to carry out their realization. The recommended frequency is 2 to 3 days per week weeks. The volume that stands out is 2 to 3 sets and 6 to 15 repetitions per exercise where the prevailing intensity is 60% to 85% percent of 1RM or moderate intensity on the perceived exertion scale (AU)


Assuntos
Humanos , Treinamento de Força/métodos , Desenvolvimento Infantil/fisiologia , Desenvolvimento Muscular/fisiologia
3.
Nat Commun ; 14(1): 8131, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38065962

RESUMO

The cellular prion protein (PrPC) is required for skeletal muscle function. Here, we report that a higher level of PrPC accumulates in the cytoplasm of the skeletal muscle of six myopathy patients compared to controls. PrPC inhibits skeletal muscle cell autophagy, and blocks myoblast differentiation. PrPC selectively binds to a subset of miRNAs during myoblast differentiation, and the colocalization of PrPC and miR-214-3p was observed in the skeletal muscle of six myopathy patients with excessive PrPC. We demonstrate that PrPC is overexpressed in skeletal muscle cells under pathological conditions, inhibits muscle cell differentiation by physically interacting with a subset of miRNAs, and selectively recruits these miRNAs into its phase-separated condensate in living myoblasts, which in turn enhances liquid-liquid phase separation of PrPC, promotes pathological aggregation of PrP, and results in the inhibition of autophagy-related protein 5-dependent autophagy and muscle bundle formation in myopathy patients characterized by incomplete muscle regeneration.


Assuntos
MicroRNAs , Doenças Musculares , Proteínas PrPC , Humanos , Diferenciação Celular/genética , Proliferação de Células , MicroRNAs/genética , MicroRNAs/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Doenças Musculares/metabolismo , Proteínas PrPC/metabolismo
4.
Elife ; 122023 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-37963071

RESUMO

In vitro culture systems that structurally model human myogenesis and promote PAX7+ myogenic progenitor maturation have not been established. Here we report that human skeletal muscle organoids can be differentiated from induced pluripotent stem cell lines to contain paraxial mesoderm and neuromesodermal progenitors and develop into organized structures reassembling neural plate border and dermomyotome. Culture conditions instigate neural lineage arrest and promote fetal hypaxial myogenesis toward limb axial anatomical identity, with generation of sustainable uncommitted PAX7 myogenic progenitors and fibroadipogenic (PDGFRa+) progenitor populations equivalent to those from the second trimester of human gestation. Single-cell comparison to human fetal and adult myogenic progenitor /satellite cells reveals distinct molecular signatures for non-dividing myogenic progenitors in activated (CD44High/CD98+/MYOD1+) and dormant (PAX7High/FBN1High/SPRY1High) states. Our approach provides a robust 3D in vitro developmental system for investigating muscle tissue morphogenesis and homeostasis.


Humans contains around 650 skeletal muscles which allow the body to move around and maintain its posture. Skeletal muscles are made up of individual cells that bundle together into highly organized structures. If this group of muscles fail to develop correctly in the embryo and/or fetus, this can lead to muscular disorders that can make it painful and difficult to move. One way to better understand how skeletal muscles are formed, and how this process can go wrong, is to grow them in the laboratory. This can be achieved using induced pluripotent stem cells (iPSCs), human adult cells that have been 'reprogrammed' to behave like cells in the embryo that can develop in to almost any cell in the body. The iPSCs can then be converted into specific cell types in the laboratory, including the cells that make up skeletal muscle. Here, Mavrommatis et al. created a protocol for developing iPSCs into three-dimensional organoids which resemble how cells of the skeletal muscle look and arrange themselves in the fetus. To form the skeletal muscle organoid, Mavrommatis et al. treated iPSCs that were growing in a three-dimensional environment with various factors that are found early on in development. This caused the iPSCs to organize themselves in to embryonic and fetal structures that will eventually give rise to the parts of the body that contain skeletal muscle, such as the limbs. Within the organoid were cells that produced Pax7, a protein commonly found in myogenic progenitors that specifically mature into skeletal muscle cells in the fetus. Pax 7 is also present in 'satellite cells' that help to regrow damaged skeletal muscle in adults. Indeed, Mavrommatis et al. found that the myogenic progenitors produced by the organoid were able to regenerate muscle when transplanted in to adult mice. These findings suggest that this organoid protocol can generate cells that will give rise to skeletal muscle. In the future, these lab-grown progenitors could potentially be created from cells isolated from patients and used to repair muscle injuries. The organoid model could also provide new insights in to how skeletal muscles develop in the fetus, and how genetic mutations linked with muscular disorders disrupt this process.


Assuntos
Músculo Esquelético , Células Satélites de Músculo Esquelético , Humanos , Músculo Esquelético/metabolismo , Diferenciação Celular , Feto/metabolismo , Células Satélites de Músculo Esquelético/fisiologia , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/metabolismo
6.
Biomed Res ; 44(5): 199-207, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37779032

RESUMO

Myogenesis is required to generate skeletal muscle tissue and to maintain skeletal muscle mass. Decreased myogenesis under various pathogenic conditions results in muscular atrophy. Through a small screening of Japanese traditional (Kampo) medicines, hachimijiogan (HJG) was shown to promote the myogenic differentiation of C2C12 myoblasts through the upregulation of myogenin. In tumor-bearing cancer-cachectic mice, HJG was also found to have a protective effect against cancer-cachectic muscle wasting. This effect was significant when HJG was administered in combination with aerobic exercise by treadmill running. Moreover, HJG ameliorated the cellular atrophy of C2C12 myotubes induced by treatment with conditioned medium derived from a colon-26 cancer cell culture. In addition, HJG suppressed H2O2-dependent myotube atrophy, suggesting that HJG could reverse the atrophic phenotypes by eliminating reactive oxygen species.


Assuntos
Caquexia , Medicina Kampo , Neoplasias , Síndrome de Emaciação , Animais , Camundongos , Neoplasias do Colo/tratamento farmacológico , Peróxido de Hidrogênio/efeitos adversos , Peróxido de Hidrogênio/farmacologia , Fibras Musculares Esqueléticas/patologia , Músculo Esquelético/patologia , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/etiologia , Atrofia Muscular/patologia , Caquexia/etiologia , Síndrome de Emaciação/etiologia , Neoplasias/complicações , Desenvolvimento Muscular/genética , Desenvolvimento Muscular/fisiologia
7.
Biochem Biophys Res Commun ; 682: 223-243, 2023 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-37826946

RESUMO

Skeletal muscle myogenesis represents one of the most intensively and extensively examined systems of cell differentiation, tissue formation, and regeneration. Muscle regeneration provides an in vivo model system of postnatal myogenesis. It comprises multiple steps including muscle stem cell (or satellite cell) quiescence, activation, migration, myogenic determination, myoblast proliferation, myocyte differentiation, myofiber maturation, and hypertrophy. A variety of extracellular signaling and subsequent intracellular signal transduction pathways or networks govern the individual steps of postnatal myogenesis. Among them, MAPK pathways (the ERK, JNK, p38 MAPK, and ERK5 pathways) and PI3K-Akt signaling regulate multiple steps of myogenesis. Ca2+, cytokine, and Wnt signaling also participate in several myogenesis steps. These signaling pathways often control cell cycle regulatory proteins or the muscle-specific MyoD family and the MEF2 family of transcription factors. This article comprehensively reviews molecular mechanisms of the individual steps of postnatal skeletal muscle myogenesis by focusing on signal transduction pathways or networks. Nevertheless, no or only a partial signaling molecules or pathways have been identified in some responses during myogenesis. The elucidation of these unidentified signaling molecules and pathways leads to an extensive understanding of the molecular mechanisms of myogenesis.


Assuntos
Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/fisiologia , Proteínas Quinases Ativadas por Mitógeno/metabolismo
8.
Nat Struct Mol Biol ; 30(11): 1746-1754, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37770716

RESUMO

The fusion of mononucleated myoblasts produces multinucleated muscle fibers leading to the formation of skeletal muscle. Myomaker, a skeletal muscle-specific membrane protein, is essential for myoblast fusion. Here we report the cryo-EM structures of mouse Myomaker (mMymk) and Ciona robusta Myomaker (cMymk). Myomaker contains seven transmembrane helices (TMs) that adopt a G-protein-coupled receptor-like fold. TMs 2-4 form a dimeric interface, while TMs 3 and 5-7 create a lipid-binding site that holds the polar head of a phospholipid and allows the alkyl tails to insert into Myomaker. The similarity of cMymk and mMymk suggests a conserved Myomaker-mediated cell fusion mechanism across evolutionarily distant species. Functional analyses demonstrate the essentiality of the dimeric interface and the lipid-binding site for fusogenic activity, and heterologous cell-cell fusion assays show the importance of transcellular interactions of Myomaker protomers for myoblast fusion. Together, our findings provide structural and functional insights into the process of myoblast fusion.


Assuntos
Músculo Esquelético , Mioblastos , Animais , Camundongos , Microscopia Crioeletrônica , Diferenciação Celular , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Lipídeos , Desenvolvimento Muscular/fisiologia
9.
BMC Musculoskelet Disord ; 24(1): 576, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37454045

RESUMO

BACKGROUND: Osteoporosis is a worldwide health issue. Loss of bone mass is a potential risk factor for fragility fractures, and osteoporotic fractures place a considerable burden on society. Bone and muscle represent a functional unit in which the two tissues are intimately interconnected. Ropivacaine is a potent local anesthetic used in clinical practice for intraoperative anesthesia and postoperative pain management, in particular for hip surgery. When injected, Ropivacaine can diffuse locally through, in particular in surrounding skeletal muscle tissue, causing dose-dependent cytotoxicity, oxidative stress and myogenesis impairment. Based on those evidences, we focused our attention on Ropivacaine-induced cytotoxicity on cultured human myoblasts. METHODS: Primary human myoblasts and myotubes from healthy subjects, osteoarthritic and osteoporotic patients (OP) were cultured in the presence of Ropivacaine. In some experiments, ascorbic acid (AsA) was added as a potent antioxidant agent. Cell viability and ROS levels were evaluated to investigate the myotoxic activity and Real-Time PCR and Western blot analysis carried out to investigate the expression of proliferation and myogenic markers. RESULTS: A dose-dependent decrease of cell viability was observed after Ropivacaine exposure in both OP myoblasts and myotubes cultures, whereas those effects were not observed in the presence of Propofol, a general anesthetic. The adding of AsA reduced Ropivacaine negative effects in OP myoblast cultures. In addition, Ropivacaine exposure also increased ROS levels and upregulated Nox4 expression, an enzyme primarily implicated in skeletal muscle ROS generation. AsA treatment counteracted the oxidant activity of Ropivacaine and partially restored the basal condition in cultures. Positive myogenic markers, such as MyoD and Myf5, were downregulated by Ropivacaine exposure, whereas myostatin, a negative regulator of muscle growth and differentiation, was upregulated. The phenotypic deregulation of myogenic controllers in the presence of Ropivacaine was counteracted by AsA treatment. CONCLUSIONS: Our findings highlight the oxidative stress-mediated myotoxic effect of Ropivacaine on human skeletal muscle tissue cell cultures, and suggest treatment with AsA as valid strategy to mitigate its negative effects and allowing an ameliorated functional skeletal muscle recovery in patients undergoing hip replacement surgery for osteoporotic bone fracture.


Assuntos
Ácido Ascórbico , Miotoxicidade , Humanos , Ropivacaina , Miotoxicidade/metabolismo , Ácido Ascórbico/farmacologia , Ácido Ascórbico/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Células Cultivadas , Fibras Musculares Esqueléticas , Músculo Esquelético/fisiologia , Diferenciação Celular/fisiologia , Desenvolvimento Muscular/fisiologia
10.
Int J Mol Sci ; 24(13)2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37445602

RESUMO

As an organ system, skeletal muscle is essential for the generation of energy that underpins muscle contraction, plays a critical role in controlling energy balance and insulin-dependent glucose homeostasis, as well as vascular well-being, and regenerates following injury. To achieve homeostasis, there is requirement for "cross-talk" between the myogenic and vascular components and their regulatory factors that comprise skeletal muscle. Accordingly, this review will describe the following: [a] the embryonic cell-signaling events important in establishing vascular and myogenic cell-lineage, the cross-talk between endothelial cells (EC) and myogenic precursors underpinning the development of muscle, its vasculature and the satellite-stem-cell (SC) pool, and the EC-SC cross-talk that maintains SC quiescence and localizes ECs to SCs and angio-myogenesis postnatally; [b] the vascular-myocyte cross-talk and the actions of insulin on vasodilation and capillary surface area important for the uptake of glucose/insulin by myofibers and vascular homeostasis, the microvascular-myocyte dysfunction that characterizes the development of insulin resistance, diabetes and hypertension, and the actions of estrogen on muscle vasodilation and growth in adults; [c] the role of estrogen in utero on the development of fetal skeletal-muscle microvascularization and myofiber hypertrophy required for metabolic/vascular homeostasis after birth; [d] the EC-SC interactions that underpin myofiber vascular regeneration post-injury; and [e] the role of the skeletal-muscle vasculature in Duchenne muscular dystrophy.


Assuntos
Células Endoteliais , Músculo Esquelético , Músculo Esquelético/fisiologia , Contração Muscular , Insulina , Glucose , Desenvolvimento Muscular/fisiologia
11.
Cells ; 12(14)2023 07 11.
Artigo em Inglês | MEDLINE | ID: mdl-37508490

RESUMO

Septin7 as a unique member of the GTP binding protein family, is widely expressed in the eukaryotic cells and considered to be essential in the formation of hetero-oligomeric septin complexes. As a cytoskeletal component, Septin7 is involved in many important cellular processes. However, its contribution in striated muscle physiology is poorly described. In skeletal muscle, a highly orchestrated process of migration is crucial in the development of functional fibers and in regeneration. Here, we describe the pronounced appearance of Septin7 filaments and a continuous change of Septin7 protein architecture during the migration of myogenic cells. In Septin7 knockdown C2C12 cultures, the basic parameters of migration are significantly different, and the intracellular calcium concentration change in migrating cells are lower compared to that of scrambled cultures. Using a plant cytokinin, forchlorfenuron, to dampen septin dynamics, the altered behavior of the migrating cells is described, where Septin7-depleted cells are more resistant to the treatment. These results indicate the functional relevance of Septin7 in the migration of myoblasts, implying its contribution to muscle myogenesis and regeneration.


Assuntos
Músculo Esquelético , Septinas , Linhagem Celular , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Septinas/metabolismo , Animais , Camundongos
12.
Skelet Muscle ; 13(1): 8, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-37127758

RESUMO

BACKGROUND: Skeletal muscle development and regeneration depend on cellular fusion of myogenic progenitors to generate multinucleated myofibers. These progenitors utilize two muscle-specific fusogens, Myomaker and Myomerger, which function by remodeling cell membranes to fuse to each other or to existing myofibers. Myomaker and Myomerger expression is restricted to differentiating progenitor cells as they are not detected in adult myofibers. However, Myomaker remains expressed in myofibers from mice with muscular dystrophy. Ablation of Myomaker from dystrophic myofibers results in reduced membrane damage, leading to a model where persistent fusogen expression in myofibers, in contrast to myoblasts, is harmful. METHODS: Dox-inducible transgenic mice were developed to ectopically express Myomaker or Myomerger in the myofiber compartment of skeletal muscle. We quantified indices of myofiber membrane damage, such as serum creatine kinase and IgM+ myofibers, and assessed general muscle histology, including central nucleation, myofiber size, and fibrosis. RESULTS: Myomaker or Myomerger expression in myofibers independently caused membrane damage at acute time points. This damage led to muscle pathology, manifesting with centrally nucleated myofibers and muscle atrophy. Dual expression of both Myomaker and Myomerger in myofibers exacerbated several aspects of muscle pathology compared to expression of either fusogen by itself. CONCLUSIONS: These data reveal that while myofibers can tolerate some level of Myomaker and Myomerger, expression of a single fusogen above a threshold or co-expression of both fusogens is damaging to myofibers. These results explain the paradigm that their expression in myofibers can have deleterious consequences in muscle pathologies and highlight the need for their highly restricted expression during myogenesis and fusion.


Assuntos
Proteínas de Membrana , Proteínas Musculares , Camundongos , Animais , Proteínas de Membrana/metabolismo , Proteínas Musculares/metabolismo , Músculo Esquelético/metabolismo , Mioblastos/metabolismo , Camundongos Transgênicos , Desenvolvimento Muscular/fisiologia
13.
Biol Res ; 56(1): 21, 2023 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-37147738

RESUMO

BACKGROUND: Satellite cells are tissue-specific stem cells primarily responsible for the regenerative capacity of skeletal muscle. Satellite cell function and maintenance are regulated by extrinsic and intrinsic mechanisms, including the ubiquitin-proteasome system, which is key for maintaining protein homeostasis. In this context, it has been shown that ubiquitin-ligase NEDD4-1 targets the transcription factor PAX7 for proteasome-dependent degradation, promoting muscle differentiation in vitro. Nonetheless, whether NEDD4-1 is required for satellite cell function in regenerating muscle remains to be determined. RESULTS: Using conditional gene ablation, we show that NEDD4-1 loss, specifically in the satellite cell population, impairs muscle regeneration resulting in a significant reduction of whole-muscle size. At the cellular level, NEDD4-1-null muscle progenitors exhibit a significant decrease in the ability to proliferate and differentiate, contributing to the formation of myofibers with reduced diameter. CONCLUSIONS: These results indicate that NEDD4-1 expression is critical for proper muscle regeneration in vivo and suggest that it may control satellite cell function at multiple levels.


Assuntos
Músculo Esquelético , Complexo de Endopeptidases do Proteassoma , Complexo de Endopeptidases do Proteassoma/metabolismo , Proliferação de Células/fisiologia , Músculo Esquelético/metabolismo , Células-Tronco , Diferenciação Celular , Ubiquitinas/metabolismo , Desenvolvimento Muscular/fisiologia , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo
14.
Dev Dyn ; 252(9): 1162-1179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37222488

RESUMO

BACKGROUND: Betaglycan, also known as the TGFß type III receptor (Tgfbr3), is a co-receptor that modulates TGFß family signaling. Tgfbr3 is upregulated during C2C12 myoblast differentiation and expressed in mouse embryos myocytes. RESULTS: To investigate tgfbr3 transcriptional regulation during zebrafish embryonic myogenesis, we cloned a 3.2 kb promoter fragment that drives reporter transcription during C2C12 myoblasts differentiation and in the Tg(tgfbr3:mCherry) transgenic zebrafish. We detect tgfbr3 protein and mCherry expression in the adaxial cells concomitantly with the onset of their radial migration to become slow-twitch muscle fibers in the Tg(tgfbr3:mCherry). Remarkably, this expression displays a measurable antero-posterior somitic gradient expression. CONCLUSIONS: tgfbr3 is transcriptionally regulated during somitic muscle development in zebrafish with an antero-posterior gradient expression that preferentially marks the adaxial cells and their descendants.


Assuntos
Somitos , Peixe-Zebra , Animais , Camundongos , Somitos/metabolismo , Proteoglicanas/metabolismo , Fibras Musculares de Contração Lenta/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Desenvolvimento Muscular/fisiologia
15.
Methods Mol Biol ; 2640: 463-477, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36995614

RESUMO

Skeletal muscle is a highly ordered tissue composed of a complex network of a diverse variety of cells. The dynamic spatial and temporal interaction between these cells during homeostasis and during times of injury gives the skeletal muscle its regenerative capacity. In order to properly understand the process of regeneration, a three-dimensional (3-D) imaging process must be conducted. While there have been several protocols studying 3-D imaging, it has primarily been focused on the nervous system. This protocol aims to outline the workflow for rendering a 3-D image of the skeletal muscle using spatial data from confocal microscope images. This protocol uses the ImageJ, Ilastik, and Imaris software for 3-D rendering and computational image analysis as both are relatively easy to use and have powerful segmentation capabilities.


Assuntos
Imageamento Tridimensional , Células Satélites de Músculo Esquelético , Células Satélites de Músculo Esquelético/fisiologia , Músculo Esquelético/fisiologia , Processamento de Imagem Assistida por Computador , Desenvolvimento Muscular/fisiologia , Diferenciação Celular
16.
Biochem Biophys Res Commun ; 652: 22-30, 2023 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-36806085

RESUMO

The prevalence of idiopathic scoliosis (IS) is 2-3% worldwide and is more common in girls. Estrogen receptors (ERs) is supposed to be related to sex differences and development of IS. Meanwhile, paravertebral muscle (PVM) abnormalities play important roles in the pathogenesis of IS. But the changes of ERs between the PVMs from IS patients and controls, and the mechanism by which ERs may affect IS patients remain unclear. Thus, the expression levels of ERs, myogenesis regulator (MYOG) and adipogenesis related factors (CEBPA, PPARγ, FABP4), as well as morphological changes in the PVMs and primary skeletal muscle mesenchymal progenitor cells (hSM-MPCs) of IS patients and controls were investigated. Increased expression levels of ERs and CEBPA, PPARγ, FABP4, together with severe myofiber necrosis and fat infiltration, were found in the PVMs of IS patients. Meanwhile, upregulated ERs, FABP4 and CEBPA, downregulated MYOG and impaired myogenesis were also revealed in the hSM-MPCs of IS patients compared with those of controls. Upregulation of ERs inhibited myogenesis but increased expression of CEBPA and FABP4 in C2C12 myoblasts. Nevertheless, treatment of ER antagonist increased expression of MYOG, enhanced myogenesis and decreased expression of CEBPA and FABP4 in skeletal muscle cells of IS patients. Therefore, our study suggested that PVMs specific upregulation of ERs could impair myogenesis and increase the expression of adipogenesis related factors, further leading to PVMs abnormalities in IS patients.


Assuntos
Adipogenia , Escoliose , Humanos , Masculino , Feminino , Receptores de Estrogênio/metabolismo , Escoliose/metabolismo , PPAR gama/metabolismo , Músculo Esquelético/metabolismo , Desenvolvimento Muscular/fisiologia
17.
Sci Rep ; 13(1): 2572, 2023 02 13.
Artigo em Inglês | MEDLINE | ID: mdl-36781915

RESUMO

The aim was to evaluate the growth and meat production and some meat quality characteristics of domestic quail (Coturnix japonica) as a function of metabolizable energy (ME) levels in the diet and to adjust predicting equations in ratio to area pectoralis major muscle of the carcass through the ultrasound. Two hundred and seventy mixed sex quail from 7 to 49 days old were distributed in three treatments (7 to 21 days old, diets with 2700; 2900 and 3100 kcal ME/kg; from 21 to 49 days, diets with 2900, 3050 and 3200 kcal of ME/kg), with five replications per treatment. Ultrasonography was performed at 21; 35 and 49 days of age in the pectoralis major muscle to determine prediction equations through multiple linear regression. Feed intake (FI) and feed efficiency (FE) were linearly influenced (P < 0.05) by energy levels in both phases evaluated. Regarding sensory analysis, there was no interference of ME levels on sensory attributes. The equation for predicting breast area was Y = 0.00271*ME + 0.25411*Age-9.58002, R2 = 74.25%. It is concluded that increasing the energy level of the feed from 2700 to 3100 kcal ME/kg reduces FI and improves the FE of quail. The increase in carcass fat from 35 days of age does not harm the physical and sensory characteristics of the meat. The ultrasonography in vivo of the M. pectoralis major, considering the age and energy level of the diet, made it possible to predict the pectoral muscle are a with higher reliability.


Assuntos
Coturnix , Codorniz , Animais , Ração Animal/análise , Dieta , Desenvolvimento Muscular/fisiologia , Reprodutibilidade dos Testes , Ultrassonografia
18.
Comput Methods Programs Biomed ; 230: 107354, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36682109

RESUMO

BACKGROUND AND OBJECTIVE: The culture of skeletal muscle cells is particularly relevant to basic biomedical research and translational medicine. The incubation of dissociated cells under controlled conditions has helped to dissect several molecular mechanisms associated with muscle cell differentiation, in addition to contributing for the evaluation of drug effects and prospective cell therapies for patients with degenerative muscle pathologies. The formation of mature multinucleated myotubes is a stepwise process involving well defined events of cell proliferation, commitment, migration, and fusion easily identified through optical microscopy methods including immunofluorescence and live cell imaging. The characterization of each step is usually based on muscle cell morphology and nuclei number, as well as the presence and intracellular location of specific cell markers. However, manual quantification of these parameters in large datasets of images is work-intensive and prone to researcher's subjectivity, mostly because of the extremely elongated cell shape of large myotubes and because myotubes are multinucleated. METHODS: Here we provide two semi-automated ImageJ macros aimed to measure the width of myotubes and the nuclear/cytoplasmic localization of molecules in fluorescence images. The width measuring macro automatically determines the best angle, perpendicular to most cells, to draw a profile plot and identify and measure individual myotubes. The nuclear/cytoplasmic ratio macro compares the intensity values along lines, drawn by the user, over cytoplasm and nucleus. RESULTS: We show that the macro measurements are more consistent than manual measurements by comparing with our own results and with the literature. CONCLUSIONS: By relying on semi-automated muscle specific ImageJ macros, we seek to improve measurement accuracy and to alleviate the laborious routine of counting and measuring muscle cell features.


Assuntos
Fibras Musculares Esqueléticas , Músculo Esquelético , Humanos , Músculo Esquelético/fisiologia , Citoplasma , Núcleo Celular/metabolismo , Desenvolvimento Muscular/fisiologia , Diferenciação Celular
19.
Semin Cell Dev Biol ; 143: 66-74, 2023 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35241367

RESUMO

Mitochondria play a major role in apoptotic signaling. In addition to its role in eliminating dysfunctional cells, mitochondrial apoptotic signaling is implicated as a key component of myogenic differentiation and skeletal muscle atrophy. For example, the activation of cysteine-aspartic proteases (caspases; CASP's) can aid in the initial remodeling stages of myogenic differentiation by cleaving protein kinases, transcription factors, and cytoskeletal proteins. Precise regulation of these signals is needed to prevent excessive cell disassemble and subsequent cell death. During skeletal muscle atrophy, the activation of CASP's and mitochondrial derived nucleases participate in myonuclear fragmentation, a potential loss of myonuclei, and cleavage of contractile structures within skeletal muscle. The B cell leukemia/lymphoma 2 (BCL2) family of proteins play a significant role in regulating myogenesis and skeletal muscle atrophy by governing the initiating steps of mitochondrial apoptotic signaling. This review discusses the role of mitochondrial apoptotic signaling in skeletal muscle remodeling during myogenic differentiation and skeletal muscle pathological states, including aging, disuse, and muscular dystrophy.


Assuntos
Mitocôndrias Musculares , Desenvolvimento Muscular , Músculo Esquelético , Atrofia Muscular , Humanos , Apoptose/fisiologia , Caspases/metabolismo , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Mitocôndrias Musculares/metabolismo
20.
Anim Biotechnol ; 34(7): 3074-3084, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36244007

RESUMO

In diploid organisms, interactions between alleles determine phenotypic variation. In previous experiments, only MYH1F was found to show both ASE (spatiotemporal allele-specific expression) and TRD (allelic transmission ratio distortion) characteristics in the pectoral muscle by comparing the genome-wide allele lists of hybrid populations (F1) of meat- and egg- type chickens. In addition, MYH1F is a member of the MYH gene family, which plays an important role in skeletal muscle and non-muscle cells of animals, but the specific expression and function of this gene in chickens are still unknown. Therefore, qRT-PCR was used to detect the expression of MYH1F in different tissues of chicken. Proliferation and differentiation of chicken skeletal muscle satellite cells (SMSCs) have been detected by transfection of MYH1F-specific small interfering RNA (siRNA). The results showed that the expression of MYH1F in chicken skeletal muscle was higher than that in other tissues. Combined with CCK-8 assay, EdU assay, immunofluorescence, and Western blot Assay, it was found that MYH1F knockdown could significantly suppress the proliferation of chicken SMSCs and depress the differentiation and fusion of the cells. These results suggest that MYH1F plays a critical role in myogenesis in poultry, which is of great significance for exploring the regulatory mechanisms of muscle development and improving animal productivity.


Assuntos
Galinhas , Células Satélites de Músculo Esquelético , Animais , Galinhas/genética , Diferenciação Celular/genética , Fibras Musculares Esqueléticas , Músculo Esquelético , RNA Interferente Pequeno , Proliferação de Células/genética , Desenvolvimento Muscular/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...